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Abstract— Cloud computing plays a vital role in the next 
phase of IT enterprise. The management of data in the cloud 
computing environment is processed with the centralized data 
centers which might not be trustworthy. So, it is difficult to 
provide a security over a data storage in cloud computing. 
Several software specifications are introduced to get back the 
erroneous data from the dataset stored in the large data 
centers. One of the root causes of the software products 
frequently come up with poor, incomplete, or yet without any 
recognized specifications. In an attempt to get better program 
understanding, extended a iterative software pattern testing 
[1] in which output patterns are repeat regularly within a 
program trace, or diagonally multiple traces. Frequent 
iterative patterns provide recurrent set of program activities 
that are processed similar to the software specifications but do 
not challenge with the software engineers using the software 
nested pattern testing in cloud environment. To overcome the 
issues of storage security in cloud computing environment, a 
novel nested software pattern testing leads to not only more 
compact yet also a complete result with better efficiency. 
Nested Software Pattern (NSP) - block algorithm for nesting 
software sequential pattern testing is mainly determined over 
candidate’s generation and protection. NSP- BLOCK is an 
algorithm based on the concepts of memory blocks, works on 
exclusive occurrence of items in a sequential cloud database. A 
conception is a bigger software testing block can grasp the 
smaller of having same type in cloud zone to address the need 
of software engineers. Simulation experiments are conducted 
with various conditions in the cloud computing environment 
using Amazon EC2 dataset. Performance metric for 
evaluation of proposed NSP technique is measured in terms of 
Scalability, Pattern Prediction and run time (log scale). 
 

Keywords — Cloud Environment, Software testing, nested 
pattern, NSP block algorithm, sequential cloud database.  

I. INTRODUCTION 

Many applications are involved in sequence software 
pattern testing in cloud environment. Distinctive examples 
comprise  customer shopping sequences, Web click 
streams, biological sequences, sequences of events in 
science and engineering and nature and social development. 
Sequential software pattern  testing is the testing of 
commonly occurring ordered events or subsequences as 
patterns. In industry the sequential software testing can be 
helpful for target marketing, customer retention and many 
other tasks in cloud environment. Other areas where  
sequential analysis used are web access software pattern  
analysis. 

Cloud Computing is a representation of distributing the 
processing tasks to the resource pool which comprises of a 
huge number of computers, so that numerous application 
systems can receive the storage space, computing power, 
and a variety of software services provided with a demand 
over the data. The novelty of the Cloud Computing is that it 
almost takes out an restricted cheap storage space and 
processing power. This turn out to be a platform for storing 
and processing the huge amount of data. 

Cloud computing united with data mining can present 
authoritative capabilities of storage and processing and an 
exceptional resource administration. Owing to the fiery data 
development and quantity of computation concerned in data 
mining, a competent and high-performance processing is 
very essential for a thriving data mining application. Data 
mining in the cloud computing environment can be 
measured as the prospect of data mining as of the rewards 
of cloud computing model.  

Cloud computing provides larger capabilities in data 
mining and data analytics. The main apprehension about 
data mining is that the storage space needed by the 
processes and item sets is very huge. There are definite 
issues related with data mining in the cloud computing. The 
foremost problem of data mining with cloud computing is 
safety as the cloud provider containing inclusive control on 
the fundamental computing communications. Special 
attention has to be taken so as to guarantee the safety of 
data beneath cloud computing environment. 

Similar to the closed item set mining algorithms, pattern 
mining tracks a safeguarding and test model, i.e., it desires 
to preserve the set of previously mined blocked series 
candidates which can be utilized to reduce search space and 
test out if a recently established frequent sequence is 
capable to be blocked. But, a closed pattern mining 
algorithm contain poor scalability in the number of regular 
closed patterns since a huge number of candidates will take 
up much memory and guide to outsized search space for the 
new pattern analysis, which is typically the case when the 
support threshold is small or the patterns turn into long. To 
provide a pattern mining to the data for security purpose, in 
this work, a solution is presented using NSP-BLOCK 
algorithm that mines the entire set of frequent closed 
sequences.  
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   The rest of this paper is organized as follows: Section 2 
discuss the related work to pattern mining problem for 
storage space in cloud. Section 3 is focused on the 
NSPBLOCK algorithm. Section 4 present an experimental 
study with Amazon EC2 dataset and Section 5 describes the 
results comparison with the existing algorithms. Finally, the 
research is concluded with the conclusion in section 6.  

II. LITERATURE REVIEW 

Cloud computing allows vastly scalable services to be 
simply addicted over the Internet on an as-required basis. A 
major characteristic of the cloud forces is that users’ data 
are typically practiced distantly in unidentified machines 
that users do not possess or work. While liking the 
handiness conveyed by the novel emerging expertise, users’ 
worries of trailing control of their individual data (mainly, 
economic and health data) can turn out to be an important 
obstruction to the broad acceptance of cloud services. To 
deal with this problem, in [2], the author proposed a novel 
extremely decentralized information responsibility structure 
to keep track of the definite practice of the users’ data in the 
cloud. 

In [3], the author considered the trouble of conveying a 
set of clients with difficulties to a set of servers with 
capabilities and degree constraints. The objective is to 
discover a distribution such that the number of clients 
dispersed to a server is slighter than the server’s amount 
and their general demand is lesser than the server’s facility, 
while exploiting the general throughput. 

Cloud computing, with its pledge of (almost) 
unrestrained calculation, storage space and bandwidth, is 
progressively suitable for the infrastructure of option for 
numerous organizations. As cloud contributions mature, 
service-based requests require to animatedly recompose 
themselves, to self-adapt to varying QoS requirements [4]. 
In [5], the author presented a decentralized method for such 
self-adaptation, by means of market-based heuristics. While 
this novel computing expertise needs users to commend 
their expensive data to cloud providers, there have been 
mounting security and seclusion provides on outsourced 
data. Numerous systems utilizing attribute-based encryption 
(ABE) have been planned for access control of outsourced 
data in cloud computing. 

Since this new computing technology requires users to 
entrust their valuable data to cloud providers, there have 
been increasing security and privacy concerns on 
outsourced data. Several schemes employing attribute-
based encryption (ABE) have been proposed for access 
control of outsourced data in cloud computing [6]. 

 The privacy concerns caused by preserving intermediary 
datasets in cloud are significant but they are rewarded 
diminutive attention. Storage and computation services in 
cloud are counterpart from a reasonable viewpoint since 
they are stimulating in proportion to their procedure [6]. As 
a result, cloud users can amass expensive intermediary 
datasets selectively when giving out unusual datasets in 
data-intensive requests like medical diagnosis, so as to 
restrain the general expenses by avoiding recurrent re-

computation to get hold of these datasets [12]. 
 Officially, cloud computing is observed as an creative 

permutation of a sequence of tools, instituting a novel 
business representation by presenting IT services and 
employing economies of scale [7], [11]. Users in the 
commerce chain of cloud computing can help from this new 
model. Cloud customers can hoard gigantic resources 
venture of IT infrastructure, and focus on their own interior 
business [8]. As a result, numerous companies or 
organizations have been traveling or constructing their 
business into cloud. On the other hand, frequent potential 
customers are still cautious to take benefit of cloud due to 
security and privacy concerns [9], [10]. This consumes 
more time and expensive for storing the huge amount of 
data in the cloud computing environment.  

To resolve the research gap, in this work, NSPBLOCK 
algorithm is presented to mine closed set of patterns in the 
cloud by managing the set of data in the cloud.  

III. TESTING CLOSED SEQUENTIAL PATTERN MINING IN 

CLOUD USING NSPBLOCK ALGORITHM 

 NSP testing block presented in this work, generate 
nested sequential pattern by removing the unwanted 
memory blocks. NSP testing block efficiently mine the set 
of sequential patterns in the cloud storage environment to 
enhance the security over cloud. Amazon EC2 dataset is 
used where the software frequent unique events are 
identified from the list of software events in cloud zone. It 
generate nested software pattern testing to optimize the 
software testing process. The NSP testing block algorithm 
describes the concepts of memory blocks on exclusive 
occurrence of items in a sequential Amazon Elastic 
Compute Cloud (EC2) database. The block diagram of NSP 
testing is shown in the Fig 3.1. 

 
Fig 3.1 Architecture diagram of the proposed NSPBLOCK 

   Nested Software Pattern (NSP) block diagram in fig 3.1 
describes the testing of software memory usage in cloud 
environment. Through the implementation of NSPBLOCK, 
a closed sequential pattern mining is achieved based on the 
creation of memory blocks. By keeping the sequential 
patterns regarding the data in the cloud in memory blocks, 
it will be easier for forming the set of closed patterns in the 
dataset. 
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3.1 System model 
   The network architecture for cloud data storage is  
illustrated in Fig. 3.2. 

 
Fig 3.2 Cloud data storage architecture 

 
Three diverse set of network units can be recognized as 

follows: 
 Client: an individual consumers or an organization 

maintains huge data files to be processed in the cloud 
for data maintenance and computation. 

 Cloud Storage Server (CSS): A computational resource 
for maintaining the clients’ data; 

  Third Party Auditor: A trusted entity, which has 
capabilities to render the possibility of cloud storage 
services on behalf of the clients.  

 
  In the cloud model, by placing the huge data files on the 
distant servers, the clients can be pleased of the load of 
storage and division. As clients do not process their locality 
servers for storing the data, it is of serious significance for 
the clients to make sure that their data are being 
appropriately stored and sustained. That is, clients should 
be prepared with definite security means so that they can 
occasionally authenticate the accuracy of the distant data 
even not including the subsistence of local copies. If the 
clients do not have time to check out the data, the trusted 
auditor will assist the clients based on their requests. 
 
3.2 Mining closed sequential pattern in cloud 
   There are mainly three steps to be followed in 
NSPBLOCK to generate the set of closed sequential pattern 
they are: 
 Identify the frequent unique items. 
 Generate frequent patterns on projected database for 

each item. 
 Determine closed patterns and remove them. 
 
Before starts a mining process with the sample set of 
patterns in the database, the complexity of mining in the 
cloud is described in the subsequent steps. Let D = {d1, d2, 
d3, d4….. dn} be a set of distinct software events in cloud. 
A sequence ‘P’ is an ordered list of software events, 
denoted as {i1, i2, i3,…., im} where id is an events, i.e. id € 
D for 1 < d < m. From the NSP definition, it is known that 
software events occur multiple times in different events of a 
sequence as shown in Fig 3.3. The number of software 
events i.e., instances of software items in a nested sequence 
is called the length of the nested sequence and a nested 
sequence with a length l is also called an l-sequence, for 
example SSBBCA is a 6 sequence. 
   Let us consider a scenario with a sequence nsa= 
a1a2a3….an is contained in another nested sequence nsb= 
b1b2b3….bm if there exist integers 1 < d1 < d2< …. < dn < 
dm such that a1=b1d1, a2= b2d2 and so on. If nested 
sequence NS is contained in NS’, NS is called nested 

subsequence of NS’ and NS’ is nested super-sequence of 
NS, denoted as NS [NS]. 

 

 
Fig 3.3 Output of Nested Software Pattern Testing 

 
An input nested sequence database NSDB (Fig 3.3) is a 

set of tuples with a sequence identifier and input sequences. 
The number of software tuples in NSB is called base size of 
NSB, denoted as |NSB|. A software tuple (NSid and NS) is 
said to contain a sequence NS’ if NS is a nested super-
sequence of NS’, for example in fig 3.3, software tuple (s, 
CSSBC) contain a software nested sequence CSS because 
CSSBC is a nested super sequence of CSS. The number of 
software tuples in NSB that contain NS’ is called an 
absolute support of nested sequence NS in NSB. 

Min_sup is a minimum software support threshold 
already assumed in cloud environment. A nested sequence 
NS is a frequent sequence on NSB if sup (NS) > min_sup. 
If nested sequence NS is frequent and there exist no proper 
nested super-sequence of NS with same support i.e. there 
exists no nested super-pattern ns' such that ns' כ ns, and ns' 
and ns have the same support it is called a nested software 
pattern. 

 
TABLE 3.1 Sample Nested Software Sequence Testing 

Nested Sequence identifier Nested Sequence (NS) 

1:1 CSSBC 

1:2 SBAC 

1:3 CSBC 

1:4 SBBCA 

 
NSP block are trying to implement the sequential 

software nested pattern mining by using separate memory 
blocks for separate software patterns like fig 3.3. Namely, 4 
memory blocks for all software patterns starts with S and 
another block for all patterns starts with B, C and so on. On 
placing these sequential nested software patterns in memory 
blocks, finds nested pattern with unused memory easily 
while placing them to these blocks. 

 
3.2.1 Identifying Software Frequent Pattern 
Consider a amazon EC2 dataset, Hadoop, which provides 

a detailed information about the file processing systems. 
Now, the process of presenting the operation of read, write, 
update and delete block are taken as set of software events. 
From these set of software events, the frequent set of 
patterns are identified and processed.  
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Let us assume the frequent pattern be the sessions 
required to distribute the data in the cloud environment. The 
session software event should match the following 
constraint,  

i)  The session should appear frequently in numerous 
events 

ii) The time taken to accomplish the session should lies 
minimal than the user pre-defined time (TL). 

Initially all software events unique occurrences of 
sessions are estimated with their support are placing at top 
as root node or first level, recursively extend the memory 
boxes at level J in the flow by adding an events ‘D’ at top 
level. 
 Subroutines Find unique events (D) find all unique items 

from database NS from fig 3.3 all unique occurrences 
are A B and C. The unique event occurrences of the 
sequential database are identified individually in cloud 
environment. 

    That is, the unique sessions are identified from the 
dataset based on the unique processes of events like read, 
write, modify and delete block individually.  

 Subroutine FindSoftwarePattern(UD, D) find all 
frequent software patterns in cloud where UD is the 
unique event generated in first step. NSP in return 
provide all possible frequent software patterns for one 
block; process be nested to find other possible frequent 
software patterns of different unique items generated 
earlier. After completion of this step, the outcome will 
be the set of software events with the own sequential 
frequent patterns.  

 Since the large files of the dataset are processed in terms 
of blocks, each block contains a set of unique frequent 
sessions like allocating, read, write and delete. To form a 
nested software processing scheme, each block is analyzed 
from the set of blocks to identify the set of unique software 
event i.e., session based event based on TL.  

 
 The formation of frequent set of sessions from each block 

of the large file dataset is presented in the table below (table 
3.2). 

 
TABLE 3.2 Frequent pattern mining outcome 

S. 
No 

Frequent 
Sessions 

Session 
required 

(sec) 

Event 
occurrences 

frequency (%) 
1 Allocate block, 

read 
11 20 

2 Write block 9 24 
3 Modify block 15 12 
4 Delete 12 3 
5 Analyze block 5 9 
 
After identification of software events like read, write, 

update and delete blocks, the generation of patterns is done 
based on the session requirement. For reading the data in 
the block, the event takes approximately 11 seconds to read 
the data, 9 seconds to write the data in the block of file. The 
event occurrence frequency is determined based on the 
occurrence of nested software events with its session range 
value limit.  

 

Based on the TL, the software events are classified with 
the corresponding session limit.  The repeatability of 
software events is analyzed in each block of the file is 
identified and removed by following the closed sequential 
pattern mining. Now the closed set of software events are 
formed based on nesting procedures without any 
repeatability over the information and removed from the list 
with no data loss. The process of NSPBLOCK events are 
described in the figure below, 

 

 
Fig 3.4 Process of NSPBLOCK 

 
The processes of NSPBLOCK is described in fig 3.4 with 

the software events like read, write by maintaining the 
memory block simultaneously with the operations. The 
memory block maintains the information about the session 
limit, session consumed, software event, block name, file 
name. The memory of each of the block is specified in fig 
3.5. 

 

 
Fig 3.5 Information in memory block (stack) 

 
With this information, a stack operation is presented. The 

NSPBLOCK followed the stack to provide the information 
about the frequent set of software events with its session 
limit. In each block, it maintains the information about the 
individual software event with its session limit. The 
repetition of information is identified through nested 
patterns which are formed based on the stack operation. 
Once the repetitiveness is identified, it is removed from the 
block. So, finally, the set of software events are maintained 
in the dataset with no repetitiveness in each block of the 
huge dataset.  
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 To improve the performance, implements a checking for 
NSP in same level, software events like read, write, modify 
and delete operations are processed with underline. These 
software event operations are found nested based on the 
requirement of session for the processes of events so it is 
removed from the block to reduce memory and in step 2 
will get all sequential nested software patterns of all blocks. 
Further steps are taken as sub process of step 2 in which 
checking is performed for finding the software frequent 
item sets which may occur in other blocks like block2, 
block 3 and block n are repeated in Block 2 and 4 so are 
closed and removed. Finally after reaching last step, will 
get all frequent software patterns. From Fig 3.3 found an 
output of nested software pattern testing for first extracted 
software event i.e. ‘read (allocating data)’. The algorithm 
below describes the process of NSPBLOCK process with 
the set of software events.   

 
// NSPBLOCK Algorithm 
Begin 
Input: Software Sequence Events, NSB 
//NSUnique (NSB, Vns) 
1: Vns=θ; select distinct software item D in NSB; 
2: Vns=D; 
3: Return Vns; 
//Software Frequent Pattern Block(NSb,min_sup,Vns,SFP) 
4: For each unique software item D in Vns 
5: Identify Callstack(D,nst1,nst2,NSB,Vns,NSto) 
6: Store nsto elements in SFP 

   7: Return SFP 
8: End For 
// Callstack(D, nst1,nst2,NSB,Vns,nsto) 
9: Create length (Vns)node for nst1 and nst2 and store D 

on all of them 
10: For (no p from 1 to no of length (Vns)) do 
11: Find all software event combination upto p+1 for all 

Item starts with D 
12: Check if min_sup is same as previous stack 
13: If (true)  
              14: Replace previous with new one 
15: Else  
               16: create a new node and store software item in 

cloud 
               17: Return Cloud nst1 
18: End If 
End 
Output: Complete Unique set of events 
 
For huge software frequent patterns in cloud, the length of 

frequent nested software patterns is also large. The study 
shows it is true that nested software pattern has better 
expressive power and frequent software pattern testing does 
have a better efficiency with same analytical result. NSP 
algorithm test software frequent sequences in cloud with the 
help of stack as memory blocks and then software 
sequential patterns were generated in cloud to address the 
need of software engineers in cloud environment software 
testing. 

IV. EXPERIMENTAL EVALUATION 

An experimental evaluation is carried out with the 
Amazon EC2 dataset to estimate the performance of the 
proposed NSP BLOCK algorithm. Amazon Elastic 
Compute Cloud (Amazon EC2) presents resizable 
calculating capability in the Amazon Web Services (AWS) 
cloud. Using Amazon EC2 eradicates the requirement to 
spend in hardware up front, so that it is easy to enlarge and 
organize applications faster. Amazon EC2 allows scaling up 
or down to hold changes in necessities or points in 
recognition, dropping your need to estimate traffic. 

Amazon EC2 provides a broad collection of instance 
types optimized on top form diverse use cases. Instance 
types encompass unreliable mixtures of memory, CPU, 
storage, and networking capacity and offer the litheness to 
decide the suitable mix of resources for the required 
applications. Every instance type comprises one or more 
instance ranges, permitting to level the resources to the 
necessities of the target workload. 

Hadoop is an open source accomplishment of the 
construction for large-scale parallel data processing. 
Hadoop is fame in both systems research and data mining, 
so it is significant to appreciate its runtime activities, 
pattern formation and analyze its performance against the 
PADD systems. To compare our online approach directly 
against the PADD systems proposed in [1], set of logs are 
considered, which has over 20 million log messages with an 
uncompressed size of 2.3GB. The logs were produced from 
the set of nodes approximately 200 organizing Hadoop for 
48 hours. The machine load differs from the work it 
precedes. The log consists of 575,319 event traces, with 
575,319 dissimilar file blocks in Hadoop File. The 
performance of the proposed NSP BLCOK algorithm is 
measured in terms of pattern prediction, run time and 
scalability. 

  
V. RESULTS AND DISCUSSION 

In this section (section 5), the performance of the 
proposed NSPBLOCK is evaluated against Public 
Auditability and Data Dynamics system [PADD]. The 
below table and graph describes the evaluation results. 

 
TABLE 5.1 No. of sequences vs. pattern prediction 

No. of sequences Pattern prediction (%) 

Proposed 
NSPBLOCK 

Existing PADD 

5 23 10 

10 29 13 

15 35 19 

20 40 23 

25 46 27 

30 57 35 

35 65 40 
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The prediction of formation of closed set of patterns from 
the set of sequences formed from the dataset is described in 
the table 5.1. The value of the proposed NSPBLOCK is 
compared with the existing Public Auditability and Data 
Dynamics system [PADD]. 

 

 
Fig 5.1 No. of sequences vs. pattern prediction 

 
Fig 5.1 describes the prediction of formation of closed set 

of patterns from the set of sequences formed from the 
dataset. Compared to the existing PADD, the proposed 
NSPBLOCK provides high rate in predicting the formation 
of patterns. Because, the NSPBLOCK supports mining the 
closed set of sequences based on the formation of memory 
blocks i.e., stack to store in it. So, the formed set of patterns 
are available in all the time by forming the forward attribute 
selection. The variance in the proposed NSPBLOCK 
provides 15-20% high in predicting the set of patterns from 
the dataset. 

 
TABLE 5.2 No. of records vs. running time 

No. of records Running time (sec) 
Proposed 

NSPBLOCK 
Existing 
PADD 

100 75 100 
200 100 120 
300 130 160 
400 150 180 
500 200 230 
600 250 270 
700 320 350 

 
The running time is measured for forming the closed set 

of patterns from the sequences based on the number of 
records is described in the table 5.2. The value of the 
proposed NSPBLOCK is compared with the existing Public 
Auditability and Data Dynamics system [PADD]. 

 
Fig 5.2 No. of records vs. running time 

 
 

Fig 5.2 describes the running time is measured for 
forming the closed set of patterns from the sequences based 
on the number of records. Compared to the existing PADD, 
the proposed NSPBLOCK consumes less execution time in 
the formation of patterns. Because the NSPBLOCK forms 
the closed set of patterns from the given dataset, so the 
repeatability of patterns in the dataset is less . But in the 
existing PADD systems, the output patterns are repeated 
regularly and the process of identifying the sequential 
patterns for data storage. So, the consumption of processing 
the records in the existing PADD systems is high. The 
variance in the execution time is 10-13% less in the 
proposed NSPBLOCK. 

 
TABLE 5.3 No. of patterns vs. scalability 

No. of patterns Scalability (%) 
Proposed 

NSPBLOCK 
Existing PADD 

10 75 100 
20 100 120 
30 130 160 
40 150 180 
50 200 230 

                
The scalability is measured based on the number of 

patterns formed from the set of sequences. The value of the 
proposed NSPBLOCK is compared with the existing Public 
Auditability and Data Dynamics system [PADD] is 
illustrated in table 5.3. 

 

 
Fig 5.3 No. of patterns vs. scalability 

 
Fig 5.3 describes the scalability which is measured based 

on the number of patterns formed from the set of sequences. 
Compared to the existing PADD, the proposed 
NSPBLOCK provides reliable scalability in mining the 
closed set of patterns. Since the proposed NSPBLOCK 
consumes less time and formed the set of closed patterns 
without any repeatability and data loss, the scalability is 
high in it.  

Finally, for vast frequent set of patterns where the time 
taken of forming the frequent closed patterns is also huge, 
the proposed NSPBLOCK shows that the closed pattern 
mining has enhanced communicative power with less time 
consumption as that of PADD systems i.e., frequent pattern 
mining. 
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VI. CONCLUSION 

The issues of mining closed sequential patterns in the 
cloud environment are investigated in this paper and it is 
resolved by implementing the NSP BLOCK algorithm. NSP 
BLOCK algorithm is formulated efficiently to mine the 
frequent closed sequences of software events of the cloud 
storage management. In this paper, NSP BLOCK algorithm 
is presented for mining closed set of sequences which 
occurred frequently by assisting stack as memory blocks 
and then sequential patterns were produced to the closed 
patterns. NSP BLOCK outperforms Public Auditability and 
Data Dynamics system by mining the longer set of frequent 
sequences in the given dataset with low minimum support 
with no loss of information. Experimental evaluation is 
carried out with Amazon EC2 dataset to estimate the 
performance of the proposed NSP BLOCK algorithm 
against Public Auditability and Data Dynamics system. 
Performance results revealed that the proposed NSP 
BLOCK consumes less time in forming a set of software 
patterns with 16% accuracy in predicting the set of patterns 
compared to the existing scheme. 
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