
Nested Software Pattern Testing on Cloud Storages

V.Nethaji.,M.C.A., M.Phil.
Karpagam University,

Pollachi Main Road, Eachanari Post,
Coimbatore, Tamilnadu, India.

C.Chandrasekar.M.C.A., M.Phil.,Ph.D.,

Computer Science Department,
Assistant Professor, Periyar University,

Salem, Tamilnadu, India.

Abstract— Cloud computing plays a vital role in the next
phase of IT enterprise. The management of data in the cloud
computing environment is processed with the centralized data
centers which might not be trustworthy. So, it is difficult to
provide a security over a data storage in cloud computing.
Several software specifications are introduced to get back the
erroneous data from the dataset stored in the large data
centers. One of the root causes of the software products
frequently come up with poor, incomplete, or yet without any
recognized specifications. In an attempt to get better program
understanding, extended a iterative software pattern testing
[1] in which output patterns are repeat regularly within a
program trace, or diagonally multiple traces. Frequent
iterative patterns provide recurrent set of program activities
that are processed similar to the software specifications but do
not challenge with the software engineers using the software
nested pattern testing in cloud environment. To overcome the
issues of storage security in cloud computing environment, a
novel nested software pattern testing leads to not only more
compact yet also a complete result with better efficiency.
Nested Software Pattern (NSP) - block algorithm for nesting
software sequential pattern testing is mainly determined over
candidate’s generation and protection. NSP- BLOCK is an
algorithm based on the concepts of memory blocks, works on
exclusive occurrence of items in a sequential cloud database. A
conception is a bigger software testing block can grasp the
smaller of having same type in cloud zone to address the need
of software engineers. Simulation experiments are conducted
with various conditions in the cloud computing environment
using Amazon EC2 dataset. Performance metric for
evaluation of proposed NSP technique is measured in terms of
Scalability, Pattern Prediction and run time (log scale).

Keywords — Cloud Environment, Software testing, nested
pattern, NSP block algorithm, sequential cloud database.

I. INTRODUCTION

Many applications are involved in sequence software
pattern testing in cloud environment. Distinctive examples
comprise customer shopping sequences, Web click
streams, biological sequences, sequences of events in
science and engineering and nature and social development.
Sequential software pattern testing is the testing of
commonly occurring ordered events or subsequences as
patterns. In industry the sequential software testing can be
helpful for target marketing, customer retention and many
other tasks in cloud environment. Other areas where
sequential analysis used are web access software pattern
analysis.

Cloud Computing is a representation of distributing the
processing tasks to the resource pool which comprises of a
huge number of computers, so that numerous application
systems can receive the storage space, computing power,
and a variety of software services provided with a demand
over the data. The novelty of the Cloud Computing is that it
almost takes out an restricted cheap storage space and
processing power. This turn out to be a platform for storing
and processing the huge amount of data.

Cloud computing united with data mining can present
authoritative capabilities of storage and processing and an
exceptional resource administration. Owing to the fiery data
development and quantity of computation concerned in data
mining, a competent and high-performance processing is
very essential for a thriving data mining application. Data
mining in the cloud computing environment can be
measured as the prospect of data mining as of the rewards
of cloud computing model.

Cloud computing provides larger capabilities in data
mining and data analytics. The main apprehension about
data mining is that the storage space needed by the
processes and item sets is very huge. There are definite
issues related with data mining in the cloud computing. The
foremost problem of data mining with cloud computing is
safety as the cloud provider containing inclusive control on
the fundamental computing communications. Special
attention has to be taken so as to guarantee the safety of
data beneath cloud computing environment.

Similar to the closed item set mining algorithms, pattern
mining tracks a safeguarding and test model, i.e., it desires
to preserve the set of previously mined blocked series
candidates which can be utilized to reduce search space and
test out if a recently established frequent sequence is
capable to be blocked. But, a closed pattern mining
algorithm contain poor scalability in the number of regular
closed patterns since a huge number of candidates will take
up much memory and guide to outsized search space for the
new pattern analysis, which is typically the case when the
support threshold is small or the patterns turn into long. To
provide a pattern mining to the data for security purpose, in
this work, a solution is presented using NSP-BLOCK
algorithm that mines the entire set of frequent closed
sequences.

V.Nethaji et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 988-994

www.ijcsit.com 988

 The rest of this paper is organized as follows: Section 2
discuss the related work to pattern mining problem for
storage space in cloud. Section 3 is focused on the
NSPBLOCK algorithm. Section 4 present an experimental
study with Amazon EC2 dataset and Section 5 describes the
results comparison with the existing algorithms. Finally, the
research is concluded with the conclusion in section 6.

II. LITERATURE REVIEW

Cloud computing allows vastly scalable services to be
simply addicted over the Internet on an as-required basis. A
major characteristic of the cloud forces is that users’ data
are typically practiced distantly in unidentified machines
that users do not possess or work. While liking the
handiness conveyed by the novel emerging expertise, users’
worries of trailing control of their individual data (mainly,
economic and health data) can turn out to be an important
obstruction to the broad acceptance of cloud services. To
deal with this problem, in [2], the author proposed a novel
extremely decentralized information responsibility structure
to keep track of the definite practice of the users’ data in the
cloud.

In [3], the author considered the trouble of conveying a
set of clients with difficulties to a set of servers with
capabilities and degree constraints. The objective is to
discover a distribution such that the number of clients
dispersed to a server is slighter than the server’s amount
and their general demand is lesser than the server’s facility,
while exploiting the general throughput.

Cloud computing, with its pledge of (almost)
unrestrained calculation, storage space and bandwidth, is
progressively suitable for the infrastructure of option for
numerous organizations. As cloud contributions mature,
service-based requests require to animatedly recompose
themselves, to self-adapt to varying QoS requirements [4].
In [5], the author presented a decentralized method for such
self-adaptation, by means of market-based heuristics. While
this novel computing expertise needs users to commend
their expensive data to cloud providers, there have been
mounting security and seclusion provides on outsourced
data. Numerous systems utilizing attribute-based encryption
(ABE) have been planned for access control of outsourced
data in cloud computing.

Since this new computing technology requires users to
entrust their valuable data to cloud providers, there have
been increasing security and privacy concerns on
outsourced data. Several schemes employing attribute-
based encryption (ABE) have been proposed for access
control of outsourced data in cloud computing [6].

 The privacy concerns caused by preserving intermediary
datasets in cloud are significant but they are rewarded
diminutive attention. Storage and computation services in
cloud are counterpart from a reasonable viewpoint since
they are stimulating in proportion to their procedure [6]. As
a result, cloud users can amass expensive intermediary
datasets selectively when giving out unusual datasets in
data-intensive requests like medical diagnosis, so as to
restrain the general expenses by avoiding recurrent re-

computation to get hold of these datasets [12].
 Officially, cloud computing is observed as an creative

permutation of a sequence of tools, instituting a novel
business representation by presenting IT services and
employing economies of scale [7], [11]. Users in the
commerce chain of cloud computing can help from this new
model. Cloud customers can hoard gigantic resources
venture of IT infrastructure, and focus on their own interior
business [8]. As a result, numerous companies or
organizations have been traveling or constructing their
business into cloud. On the other hand, frequent potential
customers are still cautious to take benefit of cloud due to
security and privacy concerns [9], [10]. This consumes
more time and expensive for storing the huge amount of
data in the cloud computing environment.

To resolve the research gap, in this work, NSPBLOCK
algorithm is presented to mine closed set of patterns in the
cloud by managing the set of data in the cloud.

III. TESTING CLOSED SEQUENTIAL PATTERN MINING IN

CLOUD USING NSPBLOCK ALGORITHM

 NSP testing block presented in this work, generate
nested sequential pattern by removing the unwanted
memory blocks. NSP testing block efficiently mine the set
of sequential patterns in the cloud storage environment to
enhance the security over cloud. Amazon EC2 dataset is
used where the software frequent unique events are
identified from the list of software events in cloud zone. It
generate nested software pattern testing to optimize the
software testing process. The NSP testing block algorithm
describes the concepts of memory blocks on exclusive
occurrence of items in a sequential Amazon Elastic
Compute Cloud (EC2) database. The block diagram of NSP
testing is shown in the Fig 3.1.

Fig 3.1 Architecture diagram of the proposed NSPBLOCK

 Nested Software Pattern (NSP) block diagram in fig 3.1
describes the testing of software memory usage in cloud
environment. Through the implementation of NSPBLOCK,
a closed sequential pattern mining is achieved based on the
creation of memory blocks. By keeping the sequential
patterns regarding the data in the cloud in memory blocks,
it will be easier for forming the set of closed patterns in the
dataset.

V.Nethaji et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 988-994

www.ijcsit.com 989

3.1 System model
 The network architecture for cloud data storage is
illustrated in Fig. 3.2.

Fig 3.2 Cloud data storage architecture

Three diverse set of network units can be recognized as

follows:
 Client: an individual consumers or an organization

maintains huge data files to be processed in the cloud
for data maintenance and computation.

 Cloud Storage Server (CSS): A computational resource
for maintaining the clients’ data;

 Third Party Auditor: A trusted entity, which has
capabilities to render the possibility of cloud storage
services on behalf of the clients.

 In the cloud model, by placing the huge data files on the
distant servers, the clients can be pleased of the load of
storage and division. As clients do not process their locality
servers for storing the data, it is of serious significance for
the clients to make sure that their data are being
appropriately stored and sustained. That is, clients should
be prepared with definite security means so that they can
occasionally authenticate the accuracy of the distant data
even not including the subsistence of local copies. If the
clients do not have time to check out the data, the trusted
auditor will assist the clients based on their requests.

3.2 Mining closed sequential pattern in cloud
 There are mainly three steps to be followed in
NSPBLOCK to generate the set of closed sequential pattern
they are:
 Identify the frequent unique items.
 Generate frequent patterns on projected database for

each item.
 Determine closed patterns and remove them.

Before starts a mining process with the sample set of
patterns in the database, the complexity of mining in the
cloud is described in the subsequent steps. Let D = {d1, d2,
d3, d4….. dn} be a set of distinct software events in cloud.
A sequence ‘P’ is an ordered list of software events,
denoted as {i1, i2, i3,…., im} where id is an events, i.e. id €
D for 1 < d < m. From the NSP definition, it is known that
software events occur multiple times in different events of a
sequence as shown in Fig 3.3. The number of software
events i.e., instances of software items in a nested sequence
is called the length of the nested sequence and a nested
sequence with a length l is also called an l-sequence, for
example SSBBCA is a 6 sequence.
 Let us consider a scenario with a sequence nsa=
a1a2a3….an is contained in another nested sequence nsb=
b1b2b3….bm if there exist integers 1 < d1 < d2< …. < dn <
dm such that a1=b1d1, a2= b2d2 and so on. If nested
sequence NS is contained in NS’, NS is called nested

subsequence of NS’ and NS’ is nested super-sequence of
NS, denoted as NS [NS].

Fig 3.3 Output of Nested Software Pattern Testing

An input nested sequence database NSDB (Fig 3.3) is a

set of tuples with a sequence identifier and input sequences.
The number of software tuples in NSB is called base size of
NSB, denoted as |NSB|. A software tuple (NSid and NS) is
said to contain a sequence NS’ if NS is a nested super-
sequence of NS’, for example in fig 3.3, software tuple (s,
CSSBC) contain a software nested sequence CSS because
CSSBC is a nested super sequence of CSS. The number of
software tuples in NSB that contain NS’ is called an
absolute support of nested sequence NS in NSB.

Min_sup is a minimum software support threshold
already assumed in cloud environment. A nested sequence
NS is a frequent sequence on NSB if sup (NS) > min_sup.
If nested sequence NS is frequent and there exist no proper
nested super-sequence of NS with same support i.e. there
exists no nested super-pattern ns' such that ns' כ ns, and ns'
and ns have the same support it is called a nested software
pattern.

TABLE 3.1 Sample Nested Software Sequence Testing

Nested Sequence identifier Nested Sequence (NS)

1:1 CSSBC

1:2 SBAC

1:3 CSBC

1:4 SBBCA

NSP block are trying to implement the sequential

software nested pattern mining by using separate memory
blocks for separate software patterns like fig 3.3. Namely, 4
memory blocks for all software patterns starts with S and
another block for all patterns starts with B, C and so on. On
placing these sequential nested software patterns in memory
blocks, finds nested pattern with unused memory easily
while placing them to these blocks.

3.2.1 Identifying Software Frequent Pattern
Consider a amazon EC2 dataset, Hadoop, which provides

a detailed information about the file processing systems.
Now, the process of presenting the operation of read, write,
update and delete block are taken as set of software events.
From these set of software events, the frequent set of
patterns are identified and processed.

V.Nethaji et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 988-994

www.ijcsit.com 990

Let us assume the frequent pattern be the sessions
required to distribute the data in the cloud environment. The
session software event should match the following
constraint,

i) The session should appear frequently in numerous
events

ii) The time taken to accomplish the session should lies
minimal than the user pre-defined time (TL).

Initially all software events unique occurrences of
sessions are estimated with their support are placing at top
as root node or first level, recursively extend the memory
boxes at level J in the flow by adding an events ‘D’ at top
level.
 Subroutines Find unique events (D) find all unique items

from database NS from fig 3.3 all unique occurrences
are A B and C. The unique event occurrences of the
sequential database are identified individually in cloud
environment.

 That is, the unique sessions are identified from the
dataset based on the unique processes of events like read,
write, modify and delete block individually.

 Subroutine FindSoftwarePattern(UD, D) find all
frequent software patterns in cloud where UD is the
unique event generated in first step. NSP in return
provide all possible frequent software patterns for one
block; process be nested to find other possible frequent
software patterns of different unique items generated
earlier. After completion of this step, the outcome will
be the set of software events with the own sequential
frequent patterns.

 Since the large files of the dataset are processed in terms
of blocks, each block contains a set of unique frequent
sessions like allocating, read, write and delete. To form a
nested software processing scheme, each block is analyzed
from the set of blocks to identify the set of unique software
event i.e., session based event based on TL.

 The formation of frequent set of sessions from each block

of the large file dataset is presented in the table below (table
3.2).

TABLE 3.2 Frequent pattern mining outcome

S.
No

Frequent
Sessions

Session
required

(sec)

Event
occurrences

frequency (%)
1 Allocate block,

read
11 20

2 Write block 9 24
3 Modify block 15 12
4 Delete 12 3
5 Analyze block 5 9

After identification of software events like read, write,

update and delete blocks, the generation of patterns is done
based on the session requirement. For reading the data in
the block, the event takes approximately 11 seconds to read
the data, 9 seconds to write the data in the block of file. The
event occurrence frequency is determined based on the
occurrence of nested software events with its session range
value limit.

Based on the TL, the software events are classified with
the corresponding session limit. The repeatability of
software events is analyzed in each block of the file is
identified and removed by following the closed sequential
pattern mining. Now the closed set of software events are
formed based on nesting procedures without any
repeatability over the information and removed from the list
with no data loss. The process of NSPBLOCK events are
described in the figure below,

Fig 3.4 Process of NSPBLOCK

The processes of NSPBLOCK is described in fig 3.4 with

the software events like read, write by maintaining the
memory block simultaneously with the operations. The
memory block maintains the information about the session
limit, session consumed, software event, block name, file
name. The memory of each of the block is specified in fig
3.5.

Fig 3.5 Information in memory block (stack)

With this information, a stack operation is presented. The

NSPBLOCK followed the stack to provide the information
about the frequent set of software events with its session
limit. In each block, it maintains the information about the
individual software event with its session limit. The
repetition of information is identified through nested
patterns which are formed based on the stack operation.
Once the repetitiveness is identified, it is removed from the
block. So, finally, the set of software events are maintained
in the dataset with no repetitiveness in each block of the
huge dataset.

V.Nethaji et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 988-994

www.ijcsit.com 991

 To improve the performance, implements a checking for
NSP in same level, software events like read, write, modify
and delete operations are processed with underline. These
software event operations are found nested based on the
requirement of session for the processes of events so it is
removed from the block to reduce memory and in step 2
will get all sequential nested software patterns of all blocks.
Further steps are taken as sub process of step 2 in which
checking is performed for finding the software frequent
item sets which may occur in other blocks like block2,
block 3 and block n are repeated in Block 2 and 4 so are
closed and removed. Finally after reaching last step, will
get all frequent software patterns. From Fig 3.3 found an
output of nested software pattern testing for first extracted
software event i.e. ‘read (allocating data)’. The algorithm
below describes the process of NSPBLOCK process with
the set of software events.

// NSPBLOCK Algorithm
Begin
Input: Software Sequence Events, NSB
//NSUnique (NSB, Vns)
1: Vns=θ; select distinct software item D in NSB;
2: Vns=D;
3: Return Vns;
//Software Frequent Pattern Block(NSb,min_sup,Vns,SFP)
4: For each unique software item D in Vns
5: Identify Callstack(D,nst1,nst2,NSB,Vns,NSto)
6: Store nsto elements in SFP

 7: Return SFP
8: End For
// Callstack(D, nst1,nst2,NSB,Vns,nsto)
9: Create length (Vns)node for nst1 and nst2 and store D

on all of them
10: For (no p from 1 to no of length (Vns)) do
11: Find all software event combination upto p+1 for all

Item starts with D
12: Check if min_sup is same as previous stack
13: If (true)
 14: Replace previous with new one
15: Else
 16: create a new node and store software item in

cloud
 17: Return Cloud nst1
18: End If
End
Output: Complete Unique set of events

For huge software frequent patterns in cloud, the length of

frequent nested software patterns is also large. The study
shows it is true that nested software pattern has better
expressive power and frequent software pattern testing does
have a better efficiency with same analytical result. NSP
algorithm test software frequent sequences in cloud with the
help of stack as memory blocks and then software
sequential patterns were generated in cloud to address the
need of software engineers in cloud environment software
testing.

IV. EXPERIMENTAL EVALUATION

An experimental evaluation is carried out with the
Amazon EC2 dataset to estimate the performance of the
proposed NSP BLOCK algorithm. Amazon Elastic
Compute Cloud (Amazon EC2) presents resizable
calculating capability in the Amazon Web Services (AWS)
cloud. Using Amazon EC2 eradicates the requirement to
spend in hardware up front, so that it is easy to enlarge and
organize applications faster. Amazon EC2 allows scaling up
or down to hold changes in necessities or points in
recognition, dropping your need to estimate traffic.

Amazon EC2 provides a broad collection of instance
types optimized on top form diverse use cases. Instance
types encompass unreliable mixtures of memory, CPU,
storage, and networking capacity and offer the litheness to
decide the suitable mix of resources for the required
applications. Every instance type comprises one or more
instance ranges, permitting to level the resources to the
necessities of the target workload.

Hadoop is an open source accomplishment of the
construction for large-scale parallel data processing.
Hadoop is fame in both systems research and data mining,
so it is significant to appreciate its runtime activities,
pattern formation and analyze its performance against the
PADD systems. To compare our online approach directly
against the PADD systems proposed in [1], set of logs are
considered, which has over 20 million log messages with an
uncompressed size of 2.3GB. The logs were produced from
the set of nodes approximately 200 organizing Hadoop for
48 hours. The machine load differs from the work it
precedes. The log consists of 575,319 event traces, with
575,319 dissimilar file blocks in Hadoop File. The
performance of the proposed NSP BLCOK algorithm is
measured in terms of pattern prediction, run time and
scalability.

V. RESULTS AND DISCUSSION

In this section (section 5), the performance of the
proposed NSPBLOCK is evaluated against Public
Auditability and Data Dynamics system [PADD]. The
below table and graph describes the evaluation results.

TABLE 5.1 No. of sequences vs. pattern prediction

No. of sequences Pattern prediction (%)

Proposed
NSPBLOCK

Existing PADD

5 23 10

10 29 13

15 35 19

20 40 23

25 46 27

30 57 35

35 65 40

V.Nethaji et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 988-994

www.ijcsit.com 992

The prediction of formation of closed set of patterns from
the set of sequences formed from the dataset is described in
the table 5.1. The value of the proposed NSPBLOCK is
compared with the existing Public Auditability and Data
Dynamics system [PADD].

Fig 5.1 No. of sequences vs. pattern prediction

Fig 5.1 describes the prediction of formation of closed set

of patterns from the set of sequences formed from the
dataset. Compared to the existing PADD, the proposed
NSPBLOCK provides high rate in predicting the formation
of patterns. Because, the NSPBLOCK supports mining the
closed set of sequences based on the formation of memory
blocks i.e., stack to store in it. So, the formed set of patterns
are available in all the time by forming the forward attribute
selection. The variance in the proposed NSPBLOCK
provides 15-20% high in predicting the set of patterns from
the dataset.

TABLE 5.2 No. of records vs. running time

No. of records Running time (sec)
Proposed

NSPBLOCK
Existing
PADD

100 75 100
200 100 120
300 130 160
400 150 180
500 200 230
600 250 270
700 320 350

The running time is measured for forming the closed set

of patterns from the sequences based on the number of
records is described in the table 5.2. The value of the
proposed NSPBLOCK is compared with the existing Public
Auditability and Data Dynamics system [PADD].

Fig 5.2 No. of records vs. running time

Fig 5.2 describes the running time is measured for
forming the closed set of patterns from the sequences based
on the number of records. Compared to the existing PADD,
the proposed NSPBLOCK consumes less execution time in
the formation of patterns. Because the NSPBLOCK forms
the closed set of patterns from the given dataset, so the
repeatability of patterns in the dataset is less . But in the
existing PADD systems, the output patterns are repeated
regularly and the process of identifying the sequential
patterns for data storage. So, the consumption of processing
the records in the existing PADD systems is high. The
variance in the execution time is 10-13% less in the
proposed NSPBLOCK.

TABLE 5.3 No. of patterns vs. scalability

No. of patterns Scalability (%)
Proposed

NSPBLOCK
Existing PADD

10 75 100
20 100 120
30 130 160
40 150 180
50 200 230

The scalability is measured based on the number of

patterns formed from the set of sequences. The value of the
proposed NSPBLOCK is compared with the existing Public
Auditability and Data Dynamics system [PADD] is
illustrated in table 5.3.

Fig 5.3 No. of patterns vs. scalability

Fig 5.3 describes the scalability which is measured based

on the number of patterns formed from the set of sequences.
Compared to the existing PADD, the proposed
NSPBLOCK provides reliable scalability in mining the
closed set of patterns. Since the proposed NSPBLOCK
consumes less time and formed the set of closed patterns
without any repeatability and data loss, the scalability is
high in it.

Finally, for vast frequent set of patterns where the time
taken of forming the frequent closed patterns is also huge,
the proposed NSPBLOCK shows that the closed pattern
mining has enhanced communicative power with less time
consumption as that of PADD systems i.e., frequent pattern
mining.

V.Nethaji et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 988-994

www.ijcsit.com 993

VI. CONCLUSION

The issues of mining closed sequential patterns in the
cloud environment are investigated in this paper and it is
resolved by implementing the NSP BLOCK algorithm. NSP
BLOCK algorithm is formulated efficiently to mine the
frequent closed sequences of software events of the cloud
storage management. In this paper, NSP BLOCK algorithm
is presented for mining closed set of sequences which
occurred frequently by assisting stack as memory blocks
and then sequential patterns were produced to the closed
patterns. NSP BLOCK outperforms Public Auditability and
Data Dynamics system by mining the longer set of frequent
sequences in the given dataset with low minimum support
with no loss of information. Experimental evaluation is
carried out with Amazon EC2 dataset to estimate the
performance of the proposed NSP BLOCK algorithm
against Public Auditability and Data Dynamics system.
Performance results revealed that the proposed NSP
BLOCK consumes less time in forming a set of software
patterns with 16% accuracy in predicting the set of patterns
compared to the existing scheme.

REFERENCES
[1] Qian Wang., Cong Wang., Kui Ren., Wenjing Lou., and Jin Li., “Enabling

Public Auditability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 22, NO. 5, MAY 2011

[2] Smitha Sundareswaran., Anna C. Squicciarini., and Dan Lin., “Ensuring
Distributed Accountability for Data Sharing in the Cloud,” IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,
VOL. 9, NO. 4, JULY/AUGUST 2012

[3] Olivier Beaumont., Lionel Eyraud-Dubois., and Hejer Rejeb.,
“Heterogeneous Resource Allocation under Degree Constraints,” IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS.,
2012

[4] Vivek Nallur., Rami Bahsoon., “A Decentralized Self-Adaptation
Mechanism For Service-Based Applications in The Cloud,” IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, 2012

[5] Zhiguo Wan., Jun’e Liu., and Robert H. Deng., “HASBE: A Hierarchical
Attribute-Based Solution for Flexible and Scalable Access Control in
Cloud Computing,” IEEE TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY, VOL. 7, NO. 2, APRIL 2012

[6] Xuyun Zhang., Chang Liu., Surya Nepal., Suraj Pandey., Jinjun Chen., “A
Privacy Leakage Upper-bound Constraint based Approach for Cost-
effective Privacy Preserving of Intermediate Datasets in Cloud,” IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
2012

[7] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, “A View of Cloud
Computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58, 2010.

[8] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg and I. Brandic, “Cloud
Computing and Emerging It Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility,” Fut. Gener. Comput. Syst., vol.
25, no. 6, pp. 599-616, 2009.

[9] L. Wang, J. Zhan, W. Shi and Y. Liang, “In Cloud, Can Scientific
Communities Benefit from the Economies of Scale?,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 2, pp. 296-303, 2012.

[10] H. Takabi, J.B.D. Joshi and G. Ahn, “Security and Privacy Callenges in
Cloud Computing Environments,” IEEE Security & Privacy, vol. 8, no. 6,
pp. 24-31, 2010.

[11] D. Zissis and D. Lekkas, “Addressing Cloud Computing Security [12] D.
Yuan, Y. Yang, X. Liu and J. Chen, “On-Demand Minimum Cost
Benchmarking for Intermediate Dataset Storage in Scientific Cloud
Workflow Systems,” J. Parallel Distrib. Comput., vol. 71, no. 2, pp. 316-
332, 2011.Issues,” Fut. Gener. Comput. Syst., vol. 28, no. 3, pp. 583-592,
2011.

 [12] D. Yuan, Y. Yang, X. Liu and J. Chen, “On-Demand Minimum Cost
Benchmarking for Intermediate Dataset Storage in Scientific Cloud
Workflow Systems,” J. Parallel Distrib. Comput., vol. 71, no. 2, pp. 316-
332, 2011.

V.Nethaji et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (6) , 2013, 988-994

www.ijcsit.com 994

